Netherlands Brain Bank

Progress Report 2007-2008
Netherlands Brain Bank

Progress Report 2007 - 2008
Editors

Inge Huitinga
Michiel Kooreman
Marleen C. Rademaker
Wilma T.P. Verweij

Correspondence

Netherlands Brain Bank
Meibergdreef 47
1105 BA Amsterdam
The Netherlands

T (+31) 20 566 5499
F (+31) 20 691 8466
secretariaatnhb@nin.knaw.nl
www.brainbank.nl
www.nin.knaw.nl

Objective

The objective of the Netherlands Brain Bank (NBB) is to supply the international scientific community with clinically and neuropathologically well-documented brain tissue, in order to increase the knowledge of the brain and to make the treatment of brain diseases possible.

Booklet design: Henk Stoffels
Print: Gildeprint bv, Enschede
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>History</td>
<td>9</td>
</tr>
<tr>
<td>Donor Registrations</td>
<td>11</td>
</tr>
<tr>
<td>Autopsies</td>
<td>17</td>
</tr>
<tr>
<td>Tissue Supply</td>
<td>21</td>
</tr>
<tr>
<td>Brainnet Europe</td>
<td>25</td>
</tr>
<tr>
<td>Finances</td>
<td>29</td>
</tr>
<tr>
<td>Research Projects 2007-2008</td>
<td>31</td>
</tr>
<tr>
<td>Publications</td>
<td>39</td>
</tr>
<tr>
<td>Staff and Collaborations</td>
<td>51</td>
</tr>
<tr>
<td>Appendix</td>
<td>53</td>
</tr>
</tbody>
</table>
Introduction

It is with great pleasure that I present the 2007/2008 progress report of the Netherlands Brain Bank. In 2006 we embarked on a program to professionalize all our procedures with respect to the entire process of brain banking - from procurement, handling and storage of tissue to distribution to researchers. We are happy that the new procedures have indeed proven effective. Donor registrations, tissue applications and tissue blocks sent to researchers increased significantly in 2007 and 2008. Our new informed consent forms - evaluated by the Medical Ethical Committee of VUmc - are now used. Also, we at the NBB drafted an ethical Code of Conduct for Brain Banks for a European consortium of nineteen Brain Banks, which was signed by all participating Brain Banks in Barcelona in June 2008. The Code of Conduct addresses topics such as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protection of personal data, collecting and managing human biological material, and transparency and accountability within the organization of a brain bank. By writing the Code of Conduct the NBB has set the international standard for brain banking.

I express my gratitude to the NIN, KNAW, Stichting MS Research, Internationaal Parkinson Fonds and Hersenstichting Nederland, as well as to private donors, for their financial support, which is indispensible for the continuation of the NBB.

I also thank the members of the autopsy team, many of whom are PhD students and technicians who guide and help with the autopsies, also when these occur at night, but who nevertheless perform experiments in the lab the next day. I would also like to express my gratitude to the autopsy assistants and pathologists at VUmc for their willingness to perform the autopsies.

Last but not least, I thank the donors, without whose willingness to donate their brain, worldwide scientific research of the brain and brain disease would not be possible.

Inge Huitinga
Director Netherlands Brain Bank
History

In 1978, brain researcher Professor Dick Swaab (1944) became the director of the Netherlands Institute for Brain Research. For his research on Alzheimer’s disease he needed well-documented post mortem human brain tissue. It appeared extremely difficult to obtain brains from demented people with Alzheimer’s disease through clinical autopsies in hospitals, since most demented people die at nursery homes. Therefore he decided to start a ‘brain bank’, where people could register as brain donors during life and which meant a way of collecting, characterizing, storing and disseminating human brain tissue for research purposes worldwide.

In 1985, Dick Swaab, together with neuropathologist Professor Frans Stam (VUmc), officially established the Netherlands Brain Bank (NBB). By promoting the importance of brain tissue for scientific research to nursing home physicians and family members of demented residents, the number of registered brain donors with Alzheimer’s disease grew rapidly. In 1990 the NBB started the collection of brain tissue of other disorders as well, such as Parkinson’s disease, multiple sclerosis, Huntington’s disease and psychiatric disorders. Apart from brain tissue with neurologic or psychiatric disorders the NBB also collects tissue of healthy persons, so-called ‘controls’. This control tissue is indispensible if researchers are to be able to make a comparison with the diseased tissue. An overview of the current organization of the NBB can be found in the Appendix (Figure 12).
Donor Registrations

The NBB is one of the few brain banks in the world with a donor program, which means that the NBB actively tries to motivate people with neurological, psychiatric and neuroendocrine disorders, as well as healthy persons, to register as brain donor at the NBB. With this registration, donors give informed consent to the NBB to perform a rapid autopsy after death and to supply the brain tissue for scientific research to reviewed research projects around the world. The donors also give permission to the NBB to collect medical information from their physicians after they have passed away. Currently, more than 2200 living donors with a variety of disorders are registered at the NBB.

In the period 2007-2008, the NBB developed new registration forms and accompanying informational brochures (informed consent forms). The forms were updated and brought in line with regulations and guidelines issued by international key organizations, such as the Council of Europe, the European Commission, the World Medical Association and the World Health Organization. The NBB paid special attention to the development of a separate brochure on incompetence, a consequence of several neurodegenerative diseases, such as Alzheimer’s disease. According to the Dutch Civil Code, persons reasonably unable to determine their will are incompetent to give informed consent. When a representative of the incompetent person (next of kin or designated representative) is allowed to make decisions on behalf of the incompetent person this is called authorization. Scientific research into neurological, psychiatric or neuroendocrine disorders that result in permanent incompetence is of great importance for a better understanding of the causes, pathogenesis and progression of these diseases. Such scientific research is not possible without making use of human tissue. For this reason the NBB not only accepts donors on the basis of informed consent, but also on the basis of authorization.

The informational brochures and registration forms were reviewed by the Medical Ethics Committee of VUmc, officially approved on October 30, 2008 and brought into use on November 1, 2008. They were generally well-received by donors as well as by physicians.

In order to inform our donors about the progress made within the NBB and about the scientific output achieved with material provided by the NBB we embarked on a new venture: an annual newsletter, the first of which has now been sent out.
During 2007 and 2008 730 registration packs were sent out to individuals, neurologists and nursing home physicians. The registration forms can also be downloaded from our website. In total we received 230 new registrations in 2007 and 279 new registrations in 2008 (see Figure 1). Figure 1 not only shows that the total number of annual donor registrations is increasing, but also that the number of female donor registrations increased more rapidly during the last three years than the number of male donor registrations. This is mainly caused by a remarkable increase of the number of female multiple sclerosis (MS) and non-demented control registrations. Since the prevalence of MS is twice as high for females, this likely explains the disproportionate increase of female MS donors in comparison with the number of male MS donors. However, the disproportionate increase of female control donors is rather baffling.

![Male and female donor registrations](image)

Figure 1 shows the total number of registered donors in 2007 and 2008, specified by diagnosis. In comparison with previous years, especially the numbers of MS and PD registrations have increased. This is a direct consequence of the reactivated donor programs that have started off in 2006. The increasing requests for MS and PD tissue from the scientific community could not be sufficiently met, which urged the NBB to increase the number of MS and PD donor registrations. To inform people with MS, a promotional DVD has been made that has been distributed within the MS community. Furthermore, people can order the DVD via our Dutch website. The current number of registered MS donors makes up for almost 20% of the total number of registered donors (416 out of 2152). This is relatively high compared to
the incidence of MS in the Netherlands (0.1%, source: RIVM). We attempted to reach people with PD through articles in the magazine of the PD patient organization (see Table 1).

![Number of registered donors 2007 - 2008](image)

Clinical cohorts
An effective approach to reach potential new donors is through their physician. The NBB has a loyal group of nursing home physicians, nurses, and neurologists who educate their patients about the possibility of brain donation. In 2007 a new way of reaching donors through physicians was initiated. Many academic hospitals have clinical cohorts of patients with a specific neurological or psychiatric disorder to study disease course and the effect of experimental therapies. These patients are studied longitudinally and therefore many medical data are available in a standardized manner. This makes them a very interesting group for post mortem research. Moreover, these people are willing to participate in research during life and are accordingly often willing to donate tissue after their demise.

Presentations and articles
In the past two years the NBB has put a high priority on raising awareness of the importance of research with human brain tissue and the possibility of brain donation. We visited patient meetings to give presentations on the work of the NBB and the possibility to become a donor. Being able to show them the kind of research that is performed on tissue donated to the NBB, research that might help find a cure, evokes many positive reactions and has led to many new donor registrations.
Table 1 gives an overview of the articles that were published about the work of the NBB in 2007 and 2008. We always make sure to mention that not only patients with neurological or psychiatric diseases, but also healthy control donors are crucial for good scientific research. In that way, we may also persuade many non-diseased family members to register as brain donor.

Table 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Name article / radio show (translation)</th>
<th>Name magazine / newspaper</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-2007</td>
<td>Your brain is valuable. Use it well, also after your demise!</td>
<td>Papaver (Magazine for PD patient organization)</td>
</tr>
<tr>
<td>21-12-07</td>
<td>Reaching in the dark: How unique research could raise the veil on the origin of Alzheimer’s disease</td>
<td>Het Financieele Dagblad (Daily newspaper)</td>
</tr>
<tr>
<td>28-02-08</td>
<td>Brain donation for pioneering research</td>
<td>Supplement Onze Hersenen to daily newspaper De Telegraaf</td>
</tr>
<tr>
<td>05-2008</td>
<td>Everything you always wanted to know about brain donation.</td>
<td>Papaver (Magazine for PD patient organization)</td>
</tr>
<tr>
<td>03-06-08</td>
<td>Maximum attention for the Stichting MS Research</td>
<td>Press release on the visit of Her Royal Highness Princess Máxima</td>
</tr>
<tr>
<td>17-06-08</td>
<td>For scientific research. Wanted: brains!</td>
<td>De Telegraaf (Daily newspaper)</td>
</tr>
<tr>
<td>07-2008</td>
<td>Lab tour of the Netherlands Brain Bank</td>
<td>Alzheimer Actueel (Magazine for AD patient organization)</td>
</tr>
<tr>
<td>09-2008</td>
<td>Tissue in storage</td>
<td>Quest Braintainment Magazine</td>
</tr>
<tr>
<td>02-10-08</td>
<td>Casa Luna (Radio 1)</td>
<td>N/A (appearance on radio show)</td>
</tr>
<tr>
<td>10-2008</td>
<td>The brain deserves better</td>
<td>AMC Status (Magazine for hospital staff)</td>
</tr>
<tr>
<td>11-2008</td>
<td>Your brain is valuable. Brain research on donors with dystonia</td>
<td>Tonus (Magazine of dystonia patient organization)</td>
</tr>
<tr>
<td>11-2008</td>
<td>Human brain tissue necessary prerequisite for efficient brain research</td>
<td>Rondom MS (Magazine of MS patient organization)</td>
</tr>
</tbody>
</table>

The website of the NBB

Nowadays the internet is very popular among patients trying to learn more about their illness. By making sure that the NBB is mentioned on the websites of the various patient organizations, we try to enhance public awareness of the importance of brain donation. Furthermore, the donor website of the NBB has recently been updated (www.hersenbank.nl). We can keep track of the number of visitors on our website, which allows us to evaluate the success rate of PR activities such as articles in the press or radio interviews (see Figure 3).
Future plans

In the upcoming years the NBB will pay special attention to people with psychiatric disorders, such as depression, schizophrenia and various addictions. Even though most psychiatric patients are able to give informed consent, they are often reluctant to register as donors at the NBB. The NBB will therefore work together with psychiatrists and psychiatric nurses to inform them on the importance of brain donation.

The NBB wishes to acknowledge and thank all the donors and their families for their generosity and the invaluable gift they are giving to future generations.
Autopsies

Since 1985 the NBB has performed 3099 brain autopsies. In total, the NBB performed 200 autopsies in 2007 (90) and 2008 (110). Figure 4 shows the number of autopsies in the last 5 years, clearly showing that the number of autopsies in 2008 is higher as compared to previous years. The NBB performs fast autopsies, during which, besides formalin treatment, the tissue is also frozen immediately without fixation. This ensures that high quality of the tissue is guaranteed. Figure 5 shows the autopsies by diagnosis. The NBB anticipates that the number of autopsies of donors who suffered from dementias (e.g. AD, vascular dementia) will continue to increase in upcoming years, due to general ageing of the population.

The mean age at time of death was similar for all our donors: 71.7 in 2007 (range 41 - 99) and 74.6 in 2008 (range 40 - 98). However, there are significant differences between the age at time of death for the different diagnoses. E.g., the mean age for MS donors in 2007 and 2008 was 60.6 years, for Pick’s disease it was 67.1, while for non-demented controls the mean age was 81.0 years. These data are in line with the increased risk of a short life expectancy for those suffering from these neurological disorders (Hodges et al., 2003; Sadovnick et al., 1992; Sumelahti et al., 2002).
Post mortem delay

Due to autolytic processes, tissue of the central nervous system quickly decays after death and the time to perform brain autopsy is thus short. The post mortem delay (PMD: time elapsed from a person dying to removal of the brain) depends on several factors: time of notification of the donor’s death, distance and time for transportation of the corpse and the availability of brain bank staff to perform the autopsy. Because PMD has been proposed as a tissue quality parameter, several brain banks established rapid autopsy protocols relying on 24/7 availability of staff. The NBB achieves short PMDs, with 65% of all autopsies having a PMD between 4 to 8 hours, whereas the average PMD of other European brain banks is more than 12 hours, even when they work with a 24/7 availability of staff (manuscript in prep.). Over the last 5 years the average PMD of the NBB autopsies has been extremely constant (Figure 6).
Fig. 6

References
Tissue Supply

In 2006 the NBB reviewed all its current procedures, which not only led to new informed consent forms, but also to professionalization of its application and tissue dissemination procedures. A Material Transfer Agreement (MTA) was drafted and put into use, to ensure the rights and obligations of the recipients of the tissue as well as those of the NBB. For a graphic representation of our application procedures, please see the Appendix (Figure 13). Once the NBB and the research institute have both signed the MTA, which is valid for an indefinite period of time, any researcher within the institute can apply for tissue. The first MTA was signed in June 2007. Since then, more than 40 MTAs have been entered into with universities, research institutes and pharmaceutical companies worldwide.

The number of tissue applications has been on the increase since the introduction of the new procedures (see Figure 7). Researchers have the possibility to place an inquiry on the availability of samples, which in most cases leads to an application. When this concerns a new research project, the application is reviewed by the NBB’s scientific committee. If approved, a new project number is assigned and the necessary paperwork is done, after which the tissue is supplied. The review process takes approximately four weeks. When the application concerns an existing, already reviewed, research project, this is called a supplementary application. The possibility to file a supplementary application was introduced in 2007, together with the MTA. Because the original research project has already been approved, this means that the tissue, if available, can be supplied even more quickly.

![Tissue applications 2006 - 2008](image)
In 2007 and 2008 there were 19 cases (out of 136) where tissue inquiries did not lead to actual applications. Inquiries can be for new applications as well as for supplementary applications. The main reasons why tissue inquiries or applications foundered are:
- an application form was sent to the researcher, but the researcher never actually applied for tissue;
- the NBB did not have the requested tissue.
The latter shows the need to increase the number of donors with a specific neurological or psychiatric disorder and triggered the NBB’s new donor programs, for instance, the ones concentrating on PD and MS referred to in the chapter on Donor Registrations.

In 2007, and especially in 2008, the number of samples supplied increased from 2551 in 2006 to 4402 in 2008. Figure 8 shows the specification of supplied samples by diagnosis in 2007 and 2008. Figure 9 displays the specification of the samples by type of storage. The NBB not only provides frozen or formalin fixed paraffin embedded samples, but also fresh tissue and formalin fixed tissue. The different treatments of the tissue permit the possibility of different kinds of research approaches. The black dots in Figure 10 show to which countries the NBB has provided tissue since 1985. The majority of the tissue is supplied to researchers in the Netherlands and other European countries. However, the NBB also frequently receives tissue requests from, for instance, the United States of America, Israel and Australia.
Tissue samples per type of storage

- Frozen & stored at 80° C
- Formalin fixed & embedded in paraffin
- Fresh tissue in medium
- Formalin fixed

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1200</td>
</tr>
<tr>
<td>2005</td>
<td>2400</td>
</tr>
<tr>
<td>2006</td>
<td>3000</td>
</tr>
<tr>
<td>2007</td>
<td>3600</td>
</tr>
<tr>
<td>2008</td>
<td>4200</td>
</tr>
</tbody>
</table>

Fig. 9

The World
ACCORDING TO THE NBB

Fig. 10
BrainNet Europe

BrainNet Europe II (BNE II) is a ‘Network of Excellence’, established in the 6th Framework Programme of Life Sciences of the European Commission (www.brain-net-europe.org).

The Consortium consists of 19 brain banks across Europe. BNE II is funded by the European Commission in order to carry out work with regard to its objectives, which are, among other things:

- Harmonization of neuropathological diagnostic criteria in Europe;
- Development of gold standards for quality, safety and ethics for obtaining and handling of human tissue;
- Sharing of knowledge and dissemination of the information to neuroscientists and the general public.

The NBB is a longstanding member of the BNE Consortium and an active participant designated to carry out work with regard to the ethical and legal issues in brain banking and recruitment of donors (donor programs). The work within BNE is divided in 'workpackages'. As the leader of a workpackage involving many sensitive issues, the NBB has been engaged in reviewing and adjusting its own policies and standard operating procedures. The NBB aims at achieving the highest possible standards of conduct and becoming the model for all brain banks.

Workpackage ‘Legal and ethical issues in Brain Banking’

The legal and ethical issues in brain banking are numerous. Research with human tissue, genetic research and post mortem removal of organs have given rise to many controversies in the media and posed many dilemmas in the fields of law and ethics. Due to the relative novelty of these issues, the law is often lacking in clear instructions and unambiguous guidelines.

As the leader of the workpackage on legal and ethical issues, the NBB has developed a series of documents that should provide a general ethical framework (on Consortium level) and could function as a guideline on the level of the individual organization (on brain bank level). The NBB used a structure which focuses on globally accepted bioethical principles and international doctrine. For this purpose the NBB formulated a BNE Code of Conduct, which covers basic legal rules and bioethical principles involved in brain banking and is been based on various sources available
in the field of bioethics. Such sources include laws, regulations and guidelines issued by international governmental and non-governmental key organizations, such as the Council of Europe, European Commission, World Medical Association and World Health Organization. In June 2008, all BNE II partners signed the Code of Conduct (see Figure 11). The NBB observes all rules and regulations of the Code of Conduct.

The Code of Conduct addresses fundamental topics such as the rights of the persons donating their tissue, the obligations of the brain bank with regard to respect and observance of such rights, informed consent, confidentiality, protecting personal data, collecting and managing human biological material, and transparency and accountability within the organization of a brain bank. As the Code of Conduct only sets a framework of ground rules and general principles, more concrete guidelines are included in another document called the Brain Bank Regulations. To support the daily practice and ensure compliance with the above-mentioned documents, the NBB has also developed a set of model forms and contracts - indispensable in the daily practice of any well-established brain bank. These forms and contracts include Informed Consent forms, Material Transfer Agreements and Confidentiality Agreements and have been made available to all members of the BNE Consortium. Currently the NBB is preparing a publication on the Code of Conduct.

Fig. 11
Workpackage ‘Donor program’
The NBB has a longstanding history of donor recruitment and one of the most successful donor programs in Europe, and therefore has accumulated a great deal of experience on the best ways to approach the public for the purpose of donor recruitment. In 2008 the NBB sent out extensive questionnaires to all other brain banks within BNE (with or without active donor program) to make an inventory of all current European brain banks and their mode of operation. Because the number of clinical autopsies is decreasing worldwide, brain banks are necessary to provide well-documented central nervous system tissue for scientific research purposes. Our goal with this study was to make an inventory of the current donor programs in Europe, in order to make recommendations on how to start a successful donor program. Our aim is to publish the results of this study in the course of 2009.

At the BNE 2nd international conference on Human Brain Tissue Research in Munich (December 10-12, 2008), the NBB gave a one-day workshop on Legal and Ethical Issues and Donor Recruitment in Brain Banking in Europe. This workshop contained information on the two workpackages of the NBB and was attended by approximately 50 persons in the field of brain banking.

Other workpackages
The NBB is also engaged in the workpackages of other BNE members. The NBB technicians and the neuropathologist, for instance, participate in many neuropathological diagnostic trials. During these trials the objective is to improve the staining procedures and to harmonize and optimize neuropathological diagnoses. Moreover, the NBB has been actively involved in the BNE workpackage on public relations, resulting in a new donor flyer and the development of a donor website for brain banks that currently do not have a website to promote their donor program.

Funding of NBB activities within BNE
The tasks of the NBB within the BNE Consortium are quite extensive. Part of the received funding is allocated for subcontracting on advisory work with regard to legal matters. In order to acquire advice and guidance in the field of health law, privacy legislation, intellectual property and legal knowledge with regard to biobanks for research purposes, the NBB was advised by Professor J.K.M. Gevers of the University of Amsterdam, Law Faculty, Department of Health Law.
BNE II Publications

BNE II Abstracts
The NBB receives structural financial support from the KNAW and the NIN, but apart from that it is almost completely dependent upon grants, donations and the financial contributions that are made by researchers who use NBB material. The “Stichting tot Ondersteuning van de Hersenbank” (Foundation for the Support of the NBB) was founded in 1986 and helps realize the goals of the NBB by giving financial support. Since January 2008, the foundation is being considered as ‘Algemeen Nut Beogende Instelling” (Institution for Public Advancement) by the Dutch Tax Authority. The assets of this Foundation are formed by donations, testamentary dispositions and legacies (Trade Register Amsterdam, S205869).

The work of the NBB would not be possible without the support of numerous foundations, patient organizations, and the enthusiastic dedication of private individuals.

Grants

<table>
<thead>
<tr>
<th>Fund</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural contribution of the KNAW</td>
<td>€ 215,730</td>
<td>€ 220,054</td>
</tr>
<tr>
<td>Structural contribution of the NIN</td>
<td>€ 100,000</td>
<td>€ 100,000</td>
</tr>
<tr>
<td>Stichting MS Research</td>
<td>€ 109,036</td>
<td>€ 109,036</td>
</tr>
<tr>
<td>Internationale Stichting Alzheimer Onderzoek</td>
<td>€ 10,000</td>
<td>€ 40,000</td>
</tr>
<tr>
<td>Internationaal Parkinson Fonds</td>
<td>€ 10,000</td>
<td></td>
</tr>
<tr>
<td>Hersenstichting Nederland</td>
<td></td>
<td>€ 10,000</td>
</tr>
</tbody>
</table>

The necessity of grants

Due to the received funding, the NBB is able to continue brain banking. The costs to make tissue available for research are enormous and without the help of patient organizations the NBB would not be able to maintain its high standards.

The Stichting MS Research (www.msresearch.nl) has funded the NBB for many years, resulting in an increase of the number of MS donors and availability of MS tissue. Due to the special MRI-guided dissection protocol, the autopsy costs for MS are higher than for other autopsies. Moreover, the clinical files of people with MS are often more extensive and their summarization requires a greater effort. Finally, in-depth neuropathological diagnostics of the MS plaques is time-consuming, but indispensable for good tissue dissemination. MS Research covers the costs of all MS - and some control - autopsies.
The funding of the Internationale Stichting Alzheimer Onderzoek (www.alzheimer.nl) has made it possible for the NBB to start the production of a new informative DVD, with the objective to raise awareness on the possibility of brain donation for research purposes, and to start up a DNA bank to keep up with the latest developments in research, where genotyping is becoming the important bridge between clinical and neuropathological characteristics.

The grants of the Internationaal Parkinson Fonds (www.parkinsonfonds.nl) cover the costs of all Parkinson autopsies including donor recruitment activities, which would not be possible without this extra funding.

Funding of the Hersenstichting Nederland (www.hersenstichting.nl) is used to cover donor recruitment, autopsy and administration costs.
The abstracts can be downloaded from our website

National
Amor, S. Department of Pathology, VU University Medical Center, Amsterdam. Recreating MS lesions in vitro using human brain slice cultures.
Aronica, E. Department of Pathology, Academic Medical Center, Amsterdam. Role of metabotropic glutamate receptor subtype 5 in a model of experimental autoimmune encephalomyelitis.
Bisschop, P.H. et al. Dept of Endocrinology and Metabolism, Academic Medical Center, Amsterdam. 11β-hydroxysteroid dehydrogenase (11β–HSD) type 1 and type 2 expression in human hypothalamus: implications for HPA axis regulation.
Bonifati, V. Department of Clinical Genetics, Erasmus MC, Rotterdam. Characterization of the LRRK2 protein in brain tissue from Parkinson’s disease patients and normal controls.
Bronner, I., P. Rizzu, P. Heutink, Department of Medical Genomics, VU Medical Center, Amsterdam. Comparing region specific mRNA expression profiles in tauopathies.
Heutink, P. Department of Medical Genomics, VU Medical Center, Amsterdam. A collection of region specific brain cDNA libraries for verification of the importance of identified SNPs for neurological traits.

Lucassen, P.J. et al. Center for Neuroscience. Glucocorticoid receptor (GR) in the hippocampus during aging, Alzheimer’s disease (AD) and in depression.

Van de Berg, W.D.J. Dept. Anatomy and Neurosciences, VU University Medical Center Amsterdam. Chasing genes underlying the progression of sporadic Parkinson’s Disease: identifying the genotype behind the phenotype.

Van der Valk, P. Dept. of Pathology, VU Medical Center, Amsterdam. Neuropathology of Multiple Sclerosis.

Van Velzen, M., A.D.M.E. Osterhaus and G.M.G.M. Verjans. Department of Virology, Erasmus Medical Center, Rotterdam. Immune control of latent herpes simplex virus infections.

Van Zwam, M., M. van Meurs, M. Melief, J. Voerman, A. Wolf-Wierenga, L. Boven, B.A. ‘t Hart, R. Huizinga, S. Amor, R.Q. Hintzen, J.D. Laman, Department of Immunology and Neurology. Pathogenic mechanisms during multiple sclerosis in the central nervous system and the draining cervical lymph nodes.

International

Bayer, T. et al. Department of Psychiatry, University Medicine Goettingen, Germany. Intraneuronal Abeta accumulation in Alzheimer’s disease.

Borea, P.A. and K. Varani. Institute of Pharmacology, University of Ferrara, Italy. Adenosine and dopamine receptors in Parkinson’s disease.

Choi, Y., H. Kim, K. Young Shin, E. Kim, H. Kim, C. Hyoung Park, Y. Ha Jeong, J. Yoo, J. Lee, K. Chang, S. Kim, Y. Suh. Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer’s Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea, Department of Pediatrics, School of Medicine, University of California, San Diego, USA. Minocycline attenuates neuronal cell death and improves cognitive impairment in in vivo Alzheimer’s disease Models.

Cuello, C., Dept. of Pharmacology and Therapeutics, McGill University, Montreal, Canada. Cortical synaptic remodelling in Alzheimer’s disease and animal models.

Giordana, M.T. et al. University of Turin, Turin, Italy. Expression of tumour necrosis factor-alpha, its receptors (tnfr 1/2), and ask1 in the spinal cord of amyotrophic lateral sclerosis patients.

Ha, T.Y., K.A. Chang, J. Kim, H.S. Kim, S. Kim, Y.H. Suh. Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer’s Dementia and Neuroscience Research Institute, MRC, Seoul National University, South Korea. Upregulation of S100a9 gene is a critical causative factor for the neurodegeneration and memory impairments in Alzheimer’s disease.

Houlden, H. et al. Institute of Neurology, Queen Square, London, UK. The Neuropathological features of the genetically known and unknown forms of ataxia, multiple system atrophy (MSA) and disorders of iron deposition.

Ikemoto, K. et al. Fukushima Medical University School of Medicine, Fukushima, Japan. A study on epigenetic modulation of genes related to mental disorders: Using post mortem brains.

Johnston, J., B. Irvine, D. Coulson, S. Brockbank, J. Quinn, Queen's University Belfast, School of Medicine and Dentistry, Division of Psychiatry and Neuroscience, Belfast, N. Ireland. Processing of precursor proteins implicated in Alzheimer's disease, Parkinson’s disease and dementia with Lewy bodies.

Jørgensen, O.S. and K. Sørensen. University of Copenhagen, Denmark. The apolipoprotein E (APOE) genotypes in various brain donors.

Kravitz E.,1,2 and Biegon A.1,3. 1The Joseph Sagol Neuroscience Center, Sheba Medical Center; 2Sackler Faculty of Medicine, Tel Aviv University; 3Brookhaven National lab. Sex and region dependent NMDA receptor (NMDAR) loss and neuroinflammation in Alzheimer’s disease (AD) brains postmortem.

Kumar Singh, S.1, K. Sleegers1, I. Cuys1, C.M. van Duijn2, C. van Broeckhoven1, ‘Neurodegenerative Brain Diseases Group, VIB-Department of Molecular Genetics, University of Antwerp, Belgium; ‘Genetic Epidemiology Unit, Department Epidemiology & Biostatistics, Erasmus MC Rotterdam, The Netherlands. Immunohistochemical analyses of brains of patients with autosomal dominant Alzheimer dementia.

Longone, P. Molecular Neurobiology Unit Santa Lucia Foundation, Rome, Italy. Molecular and cellular mechanisms of the motor system neurodegenerative pathologies.

Malidelis Y., Kontostavlaki D., Swaab, D.F and Panayotacopoulou M. Dept. of Psychiatry and University Mental Health Research Institute, University of Athens, Greece and Netherlands Institute for Neuroscience, Amsterdam. Glucocorticoids differentially affect the expression of tyrosine hydroxylase in the human magnocellular neurosecretory neurons: A comparative study between Dexamethasone and Prednisone treated patients.

Marcello, E.1, R. Epis1, F. Gardoni1, B. Borroni2, A. Padovani2 and M. Di Luca1. 1 Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases, University of Milan, 2 Department of Neurological Sciences, University of Brescia, Italy. ADAM10/SAP97 association is defective in Alzheimer disease patients’ hippocampus.

Matute, C., F. Pérez-Cerdá, M. Domercq, O. Pampliega, Departamento de Neurociencias, Universidad del País Vasco, Leioa-Vizcaya, Spain. Determinants of excitotoxicity in MS.

Meinl, E., Dept. Neuroimmunology, Max-Planck-Institut of Neurobiology, Martinsried, Germany. IgG synthesis within multiple sclerosis lesions correlates with local BAFF production.

Myers, A. University of Miami, USA. Genetic examination of late onset Alzheimer’s disease in neuropathological cohorts.

O’ Callaghan, P.*, J. Li†, L. Lannfelt*, U. Lindahl1, X. Zhang*. * Institute for Public Health and Caring Sciences, † Dept. of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Sweden. The fractal dimensions of Ab plaque complexity; an insight to the dynamics of Ab pathology.

Pei, J.J., Karolinska Institutet, Stockholm, Sweden. To determine whether the presence of RIDNs is unique to AD pathology or also occurs in the other neurodegenerative diseases.

Pei, J.J., Karolinska Institutet, Stockholm, Sweden. To determine whether the accumulation of activated mTOR, p70S6K, and eIF4E is unique to AD neurofibrillary tangles or also occurs in the other neurodegenerative diseases.

Rak, M. and J. Susini. ESRF, Grenoble Cedex 9, France. Synchrotron Infrared and X-ray Microspectroscopies Applied to the Analysis of Molecular and Elemental Changes Accompanying Alzheimer’s Disease.

Salter, M.G. The University of Leeds, UK. To Identify Changes in White Matter Glutamatergic Signalling With Ageing.

Shan, L., A.M. Bao and D.F. Swaab. Zhejiang University School of Medicine, Zhejiang, P.R. China and Netherlands Institute for Neuroscience, Amsterdam. The human hypothalamic histaminergic system in neuropsychiatric disorders: Expression of histidine decarboxylase (HDC) mRNA in the human hypothalamic tuberomammillary nucleus in Parkinson disease, depression, Alzheimer’s disease, eating disorder, and schizophrenia.

Tofighi, R.1, A-L Hulting2, Eva Grenbäck 2, T. Hökfelt1, S. Ceccatelli1.1 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Expression of Galanin and its receptors in different forms of pituitary tumors.

Van Nostrand, W.E. Department of Medicine, Stony Brook University, USA. In Situ Fibrillar Amyloid Degradation in Alzheimer’s Disease Tissue by Purified Myelin Basic Protein.

Villoslada, P. University of Navarra, Pamplona, Spain. Unraveling complex diseases (Autoimmune diseases) with complexity theory: from networks to the bedside.

Willnow, T.E. Max-Delbrueck Center for Molecular Medicine, Berlin, Germany. Genetic variants control SORLA expression rates and determine Alzheimer’s disease progression.

Young, L.J. Yerkes National Primate Research Center, Emory University, Atlanta USA. Neuroanatomical Distribution of the V1a Vasopressin Receptor in the Human.
Zhou J., Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China. Determining the proteomic profiles in the substantia nigra of patients with Parkinson’s disease.

Zhou, J., A.M. Bao and D.F. Swaab. Zhejiang University School of Medicine, Zhejiang, P.R. China and Netherlands Institute for Neuroscience, Amsterdam. The imbalance between glutamatergic and GABAergic innervation of the hypothalamic paraventricular nucleus in depression: a post mortem study.

Zisapel, N. Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel. Studies on protein-protein interactions of human wild-type and ALS mutant SOD1 with motor neuron specific proteins.

Pharmaceutical companies

Asterand Ltd., United Kingdom
The projects focus on Alzheimer’s disease.

Biopta Ltd., Scotland
The project focuses on cerebral blood vessel constriction and dilatation in response to 5-HT receptor agonists and anti-migraine drugs.

H. Lundbeck A/S, Denmark
Lundbeck mainly works in the area of schizophrenia, depression, Parkinson’s and Alzheimer’s disease.

Neurim Pharmaceuticals Ltd, Israel
Neurodegeneration-linked expression of astroglial markers in ALS and Alzheimer’s patients versus healthy human brain.

N.V. Organon, The Netherlands
Radioligand development for peptide receptors.

Otsuka Pharmaceuticals Ltd., Japan
Development of therapeutically and diagnostic approaches of multiple sclerosis and Parkinson’s disease.

Pfizer Ltd., United Kingdom
Radioligand binding localisation studies in the development of PET scan ligands and investigation of new pain targets in the CNS.

Schering-Plough Biopharma, USA
Development of therapeutically and diagnostic approaches of multiple sclerosis and Parkinson’s disease.

Scottish Biomedical
Pain research.
Publications

The following publications were realized through the use of NBB tissue

2008

2007

2006

2005

Vallejo-Illarramendi, A., Domercq, M., Mateu, C. A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake is a negative regulator of glutamate uptake. J Neurochem 2005; 95: 341-8.

2004

Staff and Collaborations

Managing director NIN
P. van ’t Klooster (until October 1, 2008)
R. van der Neut
r.van.der.neut@nin.knaw.nl

Director
I. Huitinga
i.huitinga@nin.knaw.nl

Technical coordinator
M. Kooreman
m.kooreman@nin.knaw.nl

Management assistant
M.C. Rademaker
m.rademaker@nin.knaw.nl

Secretariat
P. Brom
p.brom@nin.knaw.nl

Lab technicians
A. van den Berg
a.van.den.berg@nin.nl
P. Evers
p.evers@nin.knaw.nl

Medical writer
C. van Eden
c.van.eden@nin.knaw.nl

Legal advisor
N.M. Klioueva
n.klioueva@nin.knaw.nl
Neuropathologists

J.M. Rozemuller jm.rozemuller@vumc.nl
Pathological Institute, VUmc
P. van der Valk p.vandervalk@vumc.nl
Pathological Institute, VUmc
F. van de Goot F.van.der.goot@nfi.minjus.nl
Netherlands Forensic Institute, Den Haag
P. van der Voorn jp.vandervoorn@vumc.nl
Pathological Institute, VUmc
W. Kamphorst w.kamphorst@vumc.nl
Pathological Institute, VUmc

Neurologist
C.H. Polman ch.polman@vumc.nl
(For evaluation of clinical files of MS donors),
Neurology Department, VUmc

Autopsy team

We owe special thanks to the autopsy assistants of the Pathological Institute, VUmc, Amsterdam, A. van Berkom, P. Kraijeveld, T. Oldert and R. Vos, and to the undertakers of Rouwtransport Amsterdam (especially John and Frank) and Uitvaartcentrum Zuid for their dedication to the Netherlands Brain Bank.

Advisory Board
To be installed shortly. For the intended composition, we would like to refer you to the non-hierarchic scheme of the organization of the NBB (see Figure 13).

Scientific Committee
I. Huitinga (NBB)
J. Verhaagen (Netherlands Institute for Neuroscience)
J.M. Rozemuller (Pathological Institute, VUmc)
M. Kooreman (NBB)
Non-hierarchic scheme of the organization of the Netherlands Brain Bank (NBB)

Royal Netherlands Academy of Arts and Sciences (KNAW)

Netherlands Institute for Neuroscience (NIN)

Netherlands Brain Bank (NBB)

Management
- Management Board
 - Board of Directors NIN
 - Head NBB
- Daily management
 - Head NBB
 - Technical coordinator
 - Management assistant

Administration
- Management assistant
 - Secretary
 - Medical writer

Tissue Procurement and processing
- Lab technicians NBB
 - Technical coordinator
 - Lab technicians
- Autopsy Team
 - Pathologists (VUmc)
 - Mortuary assistants (VUmc)
 - Autopsy assistants
 - Radiologists (only in case of MS; VUmc)

Scientific committee
- Head NBB
- Pathologist (VUmc)
- Molecular biologist (NIN)
- Technical coordinator

Advisory council NBB (intended composition)
- Neurobiologist
- Neuroendocrinologist
- Geriatric
- Molecular biologist
- Psychiatrist
- Neuropathologist
- Health Law
- Nursing home physician
- Donor representative
The application is received by the NBB and the availability is reviewed.

The application is reviewed by the NBB’s scientific committee.

The requested material is not available

Feedback is given to the applicant

The requested material is available.

The material is collected by the researcher or send by the NBB.

The applicant receives an invoice for the financial contribution.

The MTS and Implementing Letter are signed by the applicant.

Approved

Not approved

Approximately 1 week

On average 3 weeks

Supplementary tissue application for project that has already been reviewed.

* The research institute is a legal entity with whom the MTA is signed. Legally, the research institute is thus a party of the agreement. The research institute is thus called “Recipient” of the Material in the MTA and not the researcher. In case no MTA for indefinite time has been signed at the institute/organisation where the researcher is working, the NBB will not supply any tissue. First, the authorized person (head manager or managing coordinator) needs to sign the MTA.

Legend
Application new project:
Supplementary application within reviewed project:

Fig. 13